• Integrating Nanowires into Silicon Photonics
    — B. G. Chen et al., Nat. Commun. 8, 20 (2017).
  • All-optical graphene modulator based on optical Kerr phase shift
    — S. L. Yu et al., Optica 3, 541-544 (2016).
  • Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod
    — P. Wang et al., Nano Lett. 15, 7581-7586 (2015).
  • Graphene-doped Polymer Nanofibers for Low-threshold Nonlinear Optical Waveguiding
    — C. Meng et al., Light: Science & Applications 4, e348 (2015).
  • Single Nanowire Optical Correlator
    — H. K. Yu et al., Nano Lett. 14, 3487-3490 (2014).
  • Ultrafast (200-GHz) graphene all-optical modulator
    W. Li et al., Nano Lett. 14, 955-959 (2014).
  • Photon-Plasmon Hybrid Nanowire Laser
    By near-field coupling a CdSe and a Ag nanowires, we demonstrate a hybrid photon-plasmon laser operating at 723 nm wavelength at room temperature, which offers subdiffraction-limited beam size and pure plasmon modes. — X. Q. Wu et al., Nano Lett. 13, 5654-5659 (2013).
  • Au-Nanorod-Doped Optical Nanofiber
    When a Au nanorod is doped into a polymer nanofiber, it can be efficiently excited by the waveguiding mode with photon-to-plasmon conversion efficiency as high as 70%, and is highly potential for realizing ultra-low power nanoparticle plasmonic devices. — P. Wang et al., Nano Lett. 12, 3145-3150 (2012).
  • A Tree of Optical Microfibers and Nanofibers
    The microscale optical fiber has grown into a big tree. — L. M. Tong et al., Opt. Commun. 28, 4641-4647 (2012).
  • Single-Nanowire Single-Mode Laser
    By folding both ends of a nanowire to form loop mirrors for mode selection, we demonstrate single-mode laser emission around 738-nm wavelength in a 200-nm-diameter CdSe single nanowire, with line width of 0.12 nm and low threshold. — Y. Xiao et al., Nano Lett. 11, 1122–1126 (2011).
  • Bandgap Engineered Composite Nanowire
    See how we use a source or substrate-moving thermal evaporation method to engineer single-nanowire band gap from violet to near infrared. The bandgap engineered nanowires may find applications from multicolor lighting to ultra-broadband photodetection. — F. X. Gu et al., J. Am. Chem. Soc. 133, 2037–2039 (2011); Z. Y. Yang et al., Nano Lett. 11, 5085–5089 (2011).
  • Quantum-dot-doped optical nanofibers
    A passive polymer nanofiber can be functionalized by doping quantum dots, and can be operated as an active optical nanofiber for optical sensing and more. — C. Meng et al., Adv. Mater. 23, 3770-3774 (2011).
Our group
微纳光子学研究组  隶属于浙江大学光电科学与工程学院及现代光学仪器国家重点实验室,致力于探索纳米尺度上光的科学、技术和艺术。研究兴趣包括低维光子结构及器件的理论设计、实验制备、微纳操纵、光电表征、功能化等前沿基础及应用技术。

Join us 招生介绍

Photonic quantum information requires high-purity, easily-accessible, and scalable single-photon sources. Here … Read more»
Relying on high-efficiency near-field coupling with preset coupling length, here we show a promising route to … Read more»
B. G. Chen et al., Nat. Commun. 8, 20 (2017).
Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband .... Read more»
Relying on the transverse second harmonic (TSH) generation in a highly nonlinear CdTe nanowire, we demonstrate .... Read more»
This paper reports a dramatic reduction in plasmon resonance line width of a single Au nanorod ... Read more»
Graphene offers broadband light-matter interactions with ultrafast responses. The bandwidth of previous graphene... Read more»